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Specific heat and high-temperature series of lattice models: Interpolation scheme and example
on quantum spin systems in one and two dimensions

B. Bernu*
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We have developed a method for evaluating the specific heat of lattice spin systems. It is based on the
knowledge of high-temperature series expansions, the total entropy of the system, and the low-temperature
expected behavior of the specific heat as well as the ground-state energy. By the choice of an appropriate
variable~entropy as a function of energy!, a stable interpolation scheme between low and high temperature is
performed. Contrary to previous methods, the constraint that the total entropy is log(2S11) for a spinSon each
site is automatically satisfied. We present some applications to quantum spin models on one- and two-
dimensional lattices. Remarkably, in most cases, a good accuracy is obtained down to zero temperature.
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I. INTRODUCTION

The accurate knowledge of the thermodynamic quanti
of quantum magnets is an important issue from the exp
mental point of view. It allows one to determine precise
exchange energiesJ from experimental data or to identif
possible deviations from a given model. In this paper
propose a simple method to compute the heat capacity f
a high-temperature~HT! expansion. Numerous technique
have been developed to study thermodynamical singular
from power series expansions.1 However, in this work, the
point of view is slightly different. We mainly focus on th
computation of the heat capacity for systemswithout a phase
transition at T.0 ~here in one and two dimensions! and try
to evaluate the specific heatcv(T) accurately in the larges
possible temperature range. We devised a two-point P´-
like interpolation of a particular function, namely the entro
as a function of energy, which satisfies the energy and
tropy sum rules obeyed bycv(T). These two constraints ar
nonlocal in temperature and improve significantly the co
vergence of standard Pade´ approximations.

Before describing the method itself, let us briefly revie
some commonly used methods to investigate the thermo
namic properties of spin systems.

High-temperature series expansionis the usual approach
to evaluate the strength of microscopic interactions from
periments. Thermodynamic quantities such as magnetic
ceptibility x or specific heatcv are expanded in powers o
b51/T. Presently computers do not allow to compute mo
than about 20 terms for quantum systems.2 When analyzed
through~differential! Padéapproximants, HT series give re
liable results forT greater than the typical magnetic e
change energy of the model. When the low-temperature f
of a given quantity is known, Pade´ approximants can be
improved to reproduce the correct asymptotic behav
However, with this approach it is difficult to investigate tem
peratures much belowJ. In some cases, a detailed unde
standing of the low-energy regime allows one to constr
0163-1829/2001/63~13!/134409~9!/$20.00 63 1344
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biasedapproximants and to compute thermodynamics in
larger temperature range~see for instance Ref. 3 for the mag
netic susceptibility of square- and triangular-lattice ferr
magnets!. Another series approach to thermodynamics is
finite-cluster expansion. This expansion in powers of
coupling constant may, in some cases, allows one to g
lower temperature. It has been applied in one4 and two5,6

dimensions.
Finite-size calculation. The previous approaches are exa

at high temperature but do not satisfy the sum rule that
total entropy is ln(2S11). An alternative is to compute th
heat capacity of a finite system from the exact spectrum o
small cluster of spins, and then compute the partition fu
tion by summing over all eigenstates~example: spin-1
chain7,8!. A direct finite-temperature lanczo¨s algorithm can
also be performed,9 as well as transfer matrix technique
These techniques automatically give the correct entropy,
they are limited to small systems (N<36) and finite-size
errors may be difficult to control, especially in two dime
sions.

Quantitative extrapolations toN5` of finite-sizecv,N(T)
data have been done in spin chains but are not really effic
at low temperatures. It has been applied to spin chains8,10–12

and the triangular antiferromagnet.13 Power-law behaviors a
low temperature cannot be observed due to the impor
discretization of the low-energy spectrum in a small syste

Quantum Monte-Carlosimulations can reach a rathe
large number of spins for not frustrated systems~as the
square lattice14!. These calculations reproduce the correct H
behavior~up to small statistical errors! but cannot reach the
very low-temperature regime. This technique is one of
most efficient in studying thermodynamics properties bu
requires important numerical effort and is limited to sm
systems when the model contains frustration.

Sum rules. We propose asimplemethod to compute the
heat capacity which involves a different kind of HT seri
analysis. In contrast to previous methods, we provide a p
cedure forcv(T) which satisfies a first sum rule:
©2001 The American Physical Society09-1
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E
0

`cv~T!

T
dT5 ln~2S11!. ~1!

Moreover, we incorporate the knowledge of the ground-s
energye0 and the energyem at infinite temperature. Thes
energies are either known exactly or can be computed
merically. We use this information in a second sum rule:

E
0

`

cv~T!dT5e~T5`!2e~T50!. ~2!

Finally, the low-temperature leading contribution ofcv(T) is
taken into account.

We claim that the implementation of these integral co
straints increases in a significant way the range of validity
the HT series.15 We will show that this method is indee
successful even at low or zero temperature for the models
have investigated. By ‘‘successful,’’ we mean that the s
cific heat is obtaineddown to zero temperaturewith a rela-
tive accuracy typically between 1 and 0.1 % with only t
terms in the high-temperature series. This accuracy shoul
considered as surprisingly high for low-temperature qua
ties obtained with a high-temperature series expansion.

II. INTERPOLATION PROCEDURE

A. Elementary thermodynamics: From cv„T… to s„e…

In the canonical ensemble, the energy per sitee and the
entropy per site sare increasing functions of temperatureT
51/b. Sincee is a monotonic function ofT, we can express
s as a function ofe rather than of temperature. The speci
heat as a function of temperature is easily expressed
s(e) in the following way. The entropys(T) obeys:

ds

dT
5

cv

T
, ~3!

wherecv is the specific heat per site. It follows that :

s8~e!5
ds

de
5

cv

T

dT

de
, ~4!

where the prime denotes differentiation with respect toe.
SincedT/de51/cv, we have~the Boltzmann constantkB is
set to unity in the whole paper!:

s8~e!5
1

T
5b. ~5!

We use this relation to eliminate the variable temperature
cv :

cv5
de

dT
5FdT

deG21

5F d

deS 1

s8
D G21

. ~6!

We eventually find

cv52
s82

s9
~7!
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Equations~5! and~7! are the basic relations that we shall u
here. These relations can also be obtained by considering
density of states of a large but finite system.16 For simplicity,
we discuss the case of a quantum spin1

2 model on a lattice.17

The simplest cases are the Heisenberg models:

H52J(
^ i , j &

SW i•SW j , ~8!

where the sum runs over the first nearest neighbors.s(e) is
defined inside an interval going from the ground-state ene
e0 up to the high-temperature energyem . em is the free-spin
average of the energy, which is obtained straightforwar
since, at infinite temperature one has^SW i•SW j&50. For the
Hamiltonian~8!, one simply getsem50. If the ground state
u0& is ferromagnetic@J,0 in Eq. ~8!#, one haŝ 0uSW i•SW j u0&
5 1

4 ande05Jz/4 for a Bravais lattice of coordination num
ber z. However, for antiferromagnetic models,e0 is not
known exactly but Monte-Carlo simulations, exact diagon
izations, or analytical calculation~spin-wave, mean-field
Schwinger bosons, etc.! can be used. In summary the fun
tion s(e), defined in the interval@e0,0# (e0,0), is an in-
creasing function ofe, starting at 0 ine0 with an infinite
slope, and finishing at ln(2) ine50 ~see Fig. 1!.

To find an approximation ofs(e), we combine three types
of exact informations ons(e):

~a!The entropy per spin is ln(2) at infinite temperature

s~em50!5 ln~2! ~9!

and vanishes at zero temperature:18

s~e0!50 ~10!

~b! The behavior ofcv(T→`) is known from HT series.
From the expansion ofcv(T) in powers of 1/T up to order
1/Tn, we get the expansion ofs(e) in the vicinity of e
→em50 in powers ofe to orderen:

s~e!e→05 ln~2!1(
i 52

n

aie
i . ~11!

This expansion can be computed by solving Eqs.~5! and~7!
order by order fors(e) ~details in Appendix A!.

~c! When the low-energy physics of the model is und
stood, the low-temperature limit of the specific heat can
ten be predicted. In the case where the system exhibits s
ferro- or antiferromagnetic long-range order at zero tempe

FIG. 1. Typical shape of the entropys as a function of energye
for a spin-12 system.
9-2
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SPECIFIC HEAT AND HIGH-TEMPERATURE SERIES . . . PHYSICAL REVIEW B 63 134409
ture, the low-lying excitations are spin waves. These gap
modes give a low-temperature heat capacity which is
power law. When the space dimension isD, a ferromagnet
hascv(T);TD/2 and an antiferromagnet hascv(T);TD. In
both a cases, we can write:

cv~T!T→0;Tp/q, ~12!

wherep and q are integers. This low-temperature behav
translates into a behavior ofs(e) about the ground-state en
ergy per sitee0.

s~e!e→e0
;~e2e0!p/~p1q!. ~13!

On the other hand, if elementary excitations are gapped
system has a thermally activated specific heat

cv~T!T→0;exp~2D/T! ~14!

and Eq.~13! is replaced by a logarithmic behavior about t
ground-state energy~see Appendix C!.

B. Interpolation by Padé approximants

We now define the interpolation procedure between l
and high energy fors(e). We look for an approximation o
s(e) which satisfies Eqs.~9!, ~10!, ~11!, and ~13!. A two-
point Pade´ interpolation is not directly possible sinces(e) is
singular ine5e0. We have to transforms to obtain regular
behavior in thewholeinterval@e0,0#. This is possible whenp
andq are two integers~but other low-temperature form wil
be used for thermally activatedcv in gapped systems, se
Sec. IV!. We define a functionG(e) as

G~e!5s~e!p1q. ~15!

This function now behaves as (e2e0)p whene→e0 and as
ln(2)p1q1O(e2) whene→0. It is now possible to look for
approximationsGapp of G which are of Pade´ form ~details in
Appendix B!. This interpolation scheme fails if any of th
functionsG(e), s(e), s8(e), or 2s9(e) becomes negative in
the interval@e0,0#. This provides a natural criterion to sele
the degrees@u,d# for which Pade´ approximants give physi
cal solutions. The curve for the specific heatcv(T) is even-
tually obtained in a parametric form$T(e),cv(e)%eP[e0,0]

thanks to Eqs.~5!, ~7!, and~15!.

III. LOW-TEMPERATURE POWER-LAW BEHAVIOR
OF Cv„T\0…

We start by illustrating the method for systems where
specific heat is proportional toTa at low temperature. Som
cases where the specific heat is thermally activated will
described in the next section. Data files with the numer
results presented here~as well as colored versions of th
figures! are available upon request.
13440
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A. One-dimensionalSÄ 1
2 XY model

As a first application, we consider the spin-1
2 XY chain:

H52(
i

~Si
x
•Si 11

x 1Si
y
•Si 11

y !. ~16!

This spin problem can be solved exactly~the Jordan-
Wigner transformation maps theXY model to free spinless
fermions! and provides a check for a gapless spectrum. T
energy per site atT50 ~respectively, atT→`) is e0
522/p ~respectively,em50). The heat capacity is given
by:19

cv~b!5
2b2

p E
0

p/2 cos2~k!

cosh2@b cos~k!#
dk. ~17!

From this formula, the high- and low-temperature expa
sions can be computed. We find:cv(b→0)5 1

2 b22 3
8 b4

1••• and cv(T→0)5 (p/6) T1O(T3). The linear law at
low temperature givesp5q51 in Eq. ~15!. Figure 2 shows
the comparison between the exactcv(T) and the ones ob-
tained from the Pade´ approximants. At each ordern, a few
approximants@u,n2u# lead to the same variations. In Fig. 2
only diagonal Pade´ approximants@n/2,n/2# are shown. A
convergence of the specific heat is obtained with a rela
accuracy of the order of one percentdown to zero tempera
ture with only six terms in the HT expansion. We want
emphasize that the slope (dcv /dT)(T50) is not imposed in
our procedure. Therefore, the method provides quantita
information on this low-energy parameter which charact
izes the low-energy excitations. The value of the prefacto
exactly known for thisXY model and we find that it oscil-
lates around the exact value~i.e., p/6). It is a few percent
below the exact value at the ordern56.

FIG. 2. One-dimensionalS5
1
2 XY model.Top: Exact specific

heat~full line!, approximations at ordersn52 andn54 ~dash-dot
lines!, n56 ~dotted line!. Bottom: Differences with the exact resul
~notice the magnified scale!. n56 ~Dotted line!, n58 ~dash line!,
n510 ~long dash!, n522 ~dash-dot!, andn530 ~full line!. Shown
are diagonal Pade´ approximants:@n/2,n/2#.
9-3
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B. One-dimensional antiferromagnetic Heisenberg
spin-1

2 model

H52(
i

SW i•SW i 11 ~18!

This model is solvable with the Bethe ansatz.20 The
ground-state energy is exactly known21 to be e0522 ln(2)
11

2. The low-temperature limit of the heat-capacity is22

cv(T)5T/31O(T2). The HT expansion computed by Bak
et al.23 was recently extended to orderb24 by Bühler et al.24

The heat capacity curve has been computed for anisotr
versions of the spin-1

2 chain,25 but we are not aware of an
exact computation ofcv for the isotropic Heisenberg mode
based on theexactBethe ansatz equations~due to the exis-
tence of an infinite number of coupled equations at the
tropic point!. However, an approximate solution was pr
posed recently by Klu¨mper.26 The accuracy of specific hea
obtained by his method is claimed to be extremely hig
(;1027).

Our results for this model are displayed Fig. 3. A go
convergence is obtained down to zero temperature. If
truncate the HT expansion at order seven, an absolute p
sion of one percent can already be obtained. At the high
order, the specific heat is in excellent agreement with
result of Ref. 26. The height of the peak, for instance, agr
with an accuracy of 1024. The low temperature limit is also
in good agreement with the exact result: we findcv(T)
.0.329T at order 24@instead ofcv(T)5 1

3 T#. The differ-
ence with result of Ref. 26 at intermediate temperatures~see
bottom of Fig. 3! is due to the fact the low-temperature c
efficient is off by 1% from the exact value13 . This result is
obtained without any extrapolation whenn→`. Taking into
account finite-order corrections could improve further the
curacy. The position of the peak as well as the low tempe
ture limit are summarized in Table I.

FIG. 3. Specific heat of the antiferromagnetic spin-1
2 Heisenberg

chain. Top: Result from Klümper et al. ~Ref. 26! ~full line!, ap-
proximations at ordersn53 andn55 ~dash-dotted lines!, and n
57 ~dots!. Bottom: Difference between Ref. 26 and present a
proach.n57 ~dot line!, n59 ~dash line!, n511 ~long dash!, oddn
from n513 to n523, andn524 ~full lines!.
13440
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C. Triangular lattice Heisenberg models

First, we look at the convergence of this method on
ferromagnetic case where the ground-state energy is kn
exactly. Figure 4 shows the comparison of the various P´
interpolants @u,d#, with n5u1d513 ~highest available
order27!. Two of them have a singularity (@10,3# and@4,9#).
If we exclude the polynomial form (d50) and the casesd
.10, all interpolations lead to the same variations ofcv(T)
in the whole range of temperature. Figure 4 also illustra
the very small dispersion of the different Pade´ approximants
obtained with this method. It is also remarkable that the
efficient of the dominant term at low temperature depen
weakly on the interpolation function used. As before, on
the power ofT is imposed, but the prefactor is not. We g
cv(T);0.142(2)T at low temperature. Notice that this qua
tity is not given correctly by a linear spin-wave approxim
tion ~noninteracting magnons!. We are not aware of any pre
vious result for this quantity. A high-density monolayer
solid 3He solid is, to our knowledge, the only experimen
realization of a triangular-lattice spin-1

2 ferromagnet. The
heat capacity has been measured by Ishidaet al.28 and their
results are in very good agreement with our calculations

In Figs. 5~a! and 5~b!, we see now how the result con
verges when more terms are added in the HT expansion.
each HT expansion ordern ~as indicated in the figure!, all
possible fractions@u,d# (u1d5n) are tried. Except for the
lowest order, at each order several approximants fall on
‘‘same’’ curve. A reasonable convergence is obtained e
for n55.

Figure 5~b! shows the approximatedcv(T) with increas-
ing HT order n for the antiferromagnet Hamiltonian. Thi
model is frustrated, but it is now well established29,30that the
ground-state is a three-sublattice Ne´el state. The low-
temperature specific heat is thus proportional toT2. The
ground-state energy was estimated from exact diagona
tion data.29 Again here, we see a convergence forn.5. This
should be compared with direct Pade´ approximants to the
specific heat, which was done in Ref. 27@dotted curve in Fig.
5~b!#. The comparison with our results shows indeed that
direct approach does not even allow to get correctly
maximum ofcv(T). Our method converges with a relativ

-

FIG. 4. Ferromagnetic spin-1/2 Heisenberg model on the tri
gular lattice. Comparison of the specific heats obtained from dif
ent Pade´ approximants at ordern513. The Pade´ approximant of
reference has degrees@7,6#. Approximants@6,7#, @8,5#, @12,1#, and
@3,10# differ from the reference by less than 1023.
9-4
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FIG. 5. Spin-1/2 Heisenberg model on the triangular lattice.~a! - Top: Variations ofcv(T) with respect to the number of terms in the H
expansion in the ferromagnetic case. The evenn from 2 to 8 andn513 are shown. Inset: data forn513 in a log-log plot.Bottom: Difference
with the highest order (n513). Evenn from 6 to 12 are shown. Order 12 and 13 differ by less than 3.1023. ~b!: Same as~a! for the
antiferromagnetic case. Order 12 and 13 differ by less than 2.1023. The dotted line~with the spike! is from Elstnerel al.27
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accuracy of about 1% down to zero temperature and we
cv(T);5.3(2)T2. It would be interesting to compare th
result with spin-wave calculations taking magnon-magon
teractions into account.

D. Square lattice Heisenberg model

We evaluated the specific heat for theS5 1
2 Heisenberg

model on the square lattice. Figure 6 shows the converge
of the specific heat with respect to the number of terms in
HT expansion. The convergence with the HT expansion
der is faster in the antiferromagnetic case than in the fe
magnetic one. At low temperature we obtaincv(T)
50.25(0.01)T @respectively,cv(T)50.25(0.01)T2# for the
ferromagnetic~respectively antiferromagnetic! case. The re-
sult in the antiferromagnetic case can be compared with
modified spin-wave theory of Takahashi31 which is cv(T)
50.214T2 in our units.

IV. SYSTEMS WITH THERMALLY ACTIVATED
HEAT CAPACITY

A. One-dimensional Ising model

H52(
i

Si
z
•Si 11

z ~19!
13440
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This model is the simplest one with a gapped spectrum
allows to check the convergence of our method to the ex
result in the case of a low-temperature activated heat ca
ity. The energy per site atT50 is e0521 andem50 at T
5`. The specific heat per spin is given bycv(b51/T)
5@b/cosh(b)#2. The HT expansion starts ascv(b51/T)
;b22b41 . . . , while the spectrum has a gapD52. The
heat capacity is thermally activated at low temperature:

cv~b→`!;b2exp~2Db!. ~20!

For such behavior, the entropy behaves as

s~e!;2~e2e0!log~e2e0!/D, ~21!

whene→e0. We need a transformation which converts th
logarithmic singularity into a regular behavior. We choo
the transformation

G~e!5~e2e0!
d

deF s~e!

e2e0
G ~22!

and we approximateG by a Pade´ approximant~see appendix
C for details!. The convergence is shown in Fig. 7. The g
also converges rapidly to the exact value 2. The best P´
approximants are those of the form@d,d# with d; n/2.
e

FIG. 6. spin-12 Heisenberg

model on the square lattice. Sam
as Fig. 5 for the~a! square lattice
ferromagnet and~b! square lattice
antiferromagnet. Evenn from 2 to
14 andn513 are shown. Orders
n513 and 14 differ by less than
4.1023 in the ferromagnetic case
and by less than 1023 in the anti-
ferromagnetic case.
9-5
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TABLE I. Parameters of the different models. Column two indicates whether the couplings are ferro
netic ~F! or antiferromagnetic~AF!. e0 is the ground-state energy per spin,em is the mean energy at infinite
temperature~hereem50). n is the highest known order of the HT expansion of the specific heat. The t
last columns are parameters extracted from our analysis: low-temperature limit and position of the
These result are obtained from the highest order available. The error bars reflects the dispersion
different Pade´ approximants at the highest order. Figures with a star (* ) are those for which the exact valu
is known ~see text!.

Heisenberg model e02em n cv(T→0) Tmax cv
max

S5
1
2 chain AF 22 ln 211/2a 24b 0.329* T 0.9618~2! 0.3497

S51 chain AF 21.401c 20d exp(20.40* /T) 0.861~1! 0.543~1!

Triangular lat. F 23/2 13e 0.142(2)T 1.375~5! 0.403~3!

Triangular lat. AF 21.11f 13e 5.3(2)T2 0.84~1! 0.2231~5!

Square lat. F 21 14g 0.25(0.01)T 0.785~4! 0.383~3!

Square lat. AF 21.34h,i 14g 0.25(0.01)T2 1.163~2! 0.467~2!

aReference 21. fReference 29.
bReference 24. gReference 37.
cReference 33. hReference 38.
dReference 34. iReference 39.
eReference 27.
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B. One-dimensionalSÄ1 Heisenberg model

H5(
i

SW i•SW i 11 ~23!

It is known that this system exhibits a spin gap~Haldane
phase! and the heat capacity is thermally activated. Mo
precisely, a nonlinear sigma model approach32 gives:

cv~T!5
D

A2p
S D

T D 3/2

exp~2D/T!. ~24!

More generally, if elementary excitations are weak
interacting massive bosons, one expectscv(T)
;exp(2D/T)TD/222 in space dimensionD.

FIG. 7. One-dimensional Ising model.Top: comparison between
the exact specific heat~full line! and those obtained from secon
~dot-dashed line! and third~dashed line! orders.Bottom: difference
between exact result and the approximations at ordersn52, 3, 4,
and 5.
13440
The value of the ground-state energy and spin gap
known very accurately ~from the density-matrix
renormalization-group calculations done by White a
Huse33! to be e0521.401484038971(4) and D
50.41050(2). We use the HTseries data obtained up t
order 20 by Elstner, Jolicœur, and Golinelli.34 We apply the
same transformation as with the one-dimensional Is
model. The result is shown in Fig. 8. Notice that Eq.~21!
implies cv(T);exp(2D/T)/T2 instead of;exp(2D/T)/T3/2

as it should be from Eq.~24!. The consequence of this little
inconsistency is that, at fixed order in the HT series,
overestimate the value of the gapD. Note that the correct
low-T behavior would only give a logarithmic correction t
s(e) @Eq. ~21!#. This can be rectified, in principle, by a mor
sophisticated transformation ofs(e). Nevertheless, we obtain

FIG. 8. Specific heat of the antiferromagnetic Heisenberg sp
chain.Top: HT orders aren52, 4, 6, 8, and 20~full line!. Inset:
Log-log plot of n520 and theoretical prediction of Eq.~24!
~dashed!. Bottom: Difference betweenn520 and evenn from 8 to
18. n516,18 differ fromn520 by less than 231023.
9-6
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SPECIFIC HEAT AND HIGH-TEMPERATURE SERIES . . . PHYSICAL REVIEW B 63 134409
a gap which varies roughly as 1/n2 (n is the order of the HT
expansion! and the extrapolation shown Fig. 9 gives 0.4
So, very surprisingly, this HT approach is able to provi
some quantitative and nontrivial information about the lo
energy physics.

V. CONCLUSIONS

We have presented a new and simple method to ana
HT series expansion for the specific heat of spin system
requires only : the ground-state energy and the qualita
behavior ofcv(T) at low temperature. These two pieces
information allow us to constrain the specific heat with tw
sum rules which improve drastically the convergence of
HT expansion. This technique is particularly appropriate
analyze specific heat measurements in a large temper
range. Since in many cases it is able to predict the posi
and the height of the maximum ofcv(T), this method can
simplify and improve the determination of exchange para
eter~s! and of the number of spins in the sample. Rema
ably, the method converges down to zero temperature w
only ten terms of the HT series in most of the cases we h
investigated. This method can even provide some quan
tive information on the low-energy physics@see, e.g., the
value of the spin gap of the Haldane chain, or the ze
temperature entropy of the Kagome antiferromagnet~Ref.
35!#.

It would be interesting to apply this technique to mo
sophisticated models such as thet2J or Hubbard models. It
also seems worthwhile to investigate other interpolat
methods than the simple Pade´ approximants presented her
The application of this HT analysis to systems with finit
temperature phase transitions is another promising direc
we are currently investigating.

FIG. 9. Convergence ofcv(T) at low temperature for the anti
ferromagnetic Heisenberg spin-1 chain. Even orders from 8 to
are shown. Full bold line isn520, the dashed bold line is from Re
32 ~Eq. 24!. Notice thatn516 and 18 are almost identical at th
scale of the figure. Inset: Spin gap for orders n
58,10,12,14,16,18,20. The horizontal dashed line is the exact v
~0.41! and the full line is a least-square fit to the data. It extrapola
to D5.40. Upward triangles are for approximants with degre
@n/211,n/221#, square for@n/2,n/2# and downward triangles fo
degrees@n/221,n/211#.
13440
.

-

ze
It
e

f

e
o
ure
n

-
-
th
e

a-

-

n

n

ACKNOWLEDGMENTS

We are grateful to N. Elstner, T. Jolicœur, and
Golinelli for providing us with their unpublished HT serie
on theS51 Heisenberg chain. It is also a pleasure to tha
T. Jolicœur, C. Lhuillier, M. Roger, and P. Sindzingre f
many valuable discussions and J. Talbot for a careful read
of the manuscript.

APPENDIX A: SERIES FOR s„e\0…

We describe how the series fors(e→0) is obtained from
the series forcv(T→`). Assume the expansion of the sp
cific heat is known up to ordern:

cv~T!T→`5(
i 52

n
ai

Ti
1OS 1

Tn11D . ~A1!

Equations~5! and ~7! imply

s9~e!cv@T51/s8~e!#52@s8~e!#2

s9~e!F(
i 52

n

ais8~e! i G52@s8~e!#2. ~A2!

Expanding Eq.~A2! in powers ofe gives the series fors(e
→0). For instance, if we have

cv~T!T→`5
a2

T2
1

a3

T3
1

a4

T4
1OS 1

T5D ~A3!

we obtain

s~e!e→05 ln~2!2
1

2a2
e22

a3

6a2
3

e3

1
2a4a223a3

2

24a2
5

e41O~e5!. ~A4!

In fact, solving Eq.~A2! can be done very simply with a
software likeMAPLE:

nª4; Orderªn11:

cvªadd~a@ i #/T** i , i 52..n!;

eqª2D~s!~e!**2/ D~D~s!!~e!5subs~T51/D~s!~e!,cv !;

dsolve~$eq,s~0!5 ln~2!, D~s!~0!50%,

s~e!,8type5series8);

APPENDIX B: PADÉ APPROXIMANT FOR G„e…

When the system has a specific heat with a power
Tp/q at low temperature the functionG(e)5s(e)p1q is regu-
lar at the ground-state energye5e0 as well as at high tem-
peraturee50. We can therefore approximateG by

0

ue
s
s
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Gapp~e!5 ln~2!p1qS 12
e

e0
D p

Pade[u,d]~e!, ~B1!

where Pade[u,d] (e)5N(e)/D(e), N ~respectively,D) is a
polynomial of degreeu ~respectively,d) and N(0)5D(0)
51. By construction, Eq.~B1! guarantees thatGapp has the
correct behavior at low temperatureGapp;(e2e0)p. One
has to evaluate the Pade´ approximant so that the HT expan
sion of G(e) @and thus ofs(e) and cv(T)# is exact up to
order n5u1d. As usual, this is done by expanding bo
sides of Eq.~B1! in powers ofe and solving a linear system
to determine the unknown coefficients of the two polynom
als N and D. As an example, we give here the general e
pression for the three possible approximants at ordern52:

Pade[2,0]~e!511p
e

e0
1

1

2
@p~p11!2x#S e

e0
D 2

~B2!

Pade[1,1]~e!5

11
1

2 Fp211
x

pG e

e0

11
1

2 F2p211
x

pG e

e0

~B3!

Pade[0,2]~e!21512p
e

e0
1

1

2
@p~p21!1x#S e

e0
D 2

,

~B4!
a

b

e
e

c
v

th

13440
-
-

where

x5
e0

2

a2

p1q

ln~2!
. ~B5!

APPENDIX C: G„e… FOR GAPPED SYSTEMS

With gapped systems, the specific heat has the fo
cv(T)5exp(D/T)Ta22. We obtain the low-energy limit:

s~e!.2
e2e0

D H ln@~e2e0!D#1a lnF2 ln~e2e0!

D G J .

~C1!

For a50, we recover Eq.~21! and the transformation of Eq
~22! holds. WhenaÞ0, in order to remove the logarithmi
singularities, one has to differentiate several times. But s
transformations provide singular behavior fors(e), mainly
because of the change of sign in the arguments of the
betweene5e0 ande5em50. More work has to be done in
these cases.

Unlike the case of a power-low behavior at low tempe
ture, cases with a gap require an integration in order to
back from G(e) defined Eq.~22! to the entropy and the
specific heat. Since we look for approximations ofG(e) in a
Padéform, this integration can be performed analytical
The value of the gapD can be obtained directly fromG,
without integration, sinceG(e5e0)51/D.
e
e

e

a

.
-
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