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Specific heat and high-temperature series of lattice models: Interpolation scheme and examples
on quantum spin systems in one and two dimensions
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We have developed a method for evaluating the specific heat of lattice spin systems. It is based on the
knowledge of high-temperature series expansions, the total entropy of the system, and the low-temperature
expected behavior of the specific heat as well as the ground-state energy. By the choice of an appropriate
variable(entropy as a function of energya stable interpolation scheme between low and high temperature is
performed. Contrary to previous methods, the constraint that the total entropy iStdj(fr a spinSon each
site is automatically satisfied. We present some applications to quantum spin models on one- and two-
dimensional lattices. Remarkably, in most cases, a good accuracy is obtained down to zero temperature.
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[. INTRODUCTION biasedapproximants and to compute thermodynamics in a
larger temperature rangsee for instance Ref. 3 for the mag-
The accurate knowledge of the thermodynamic quantitiesetic susceptibility of square- and triangular-lattice ferro-
of quantum magnets is an important issue from the experimagnets Another series approach to thermodynamics is the
mental point of view. It allows one to determine preciselyfinite-cluster expansion. This expansion in powers of the
exchange energie$ from experimental data or to identify coupling constant may, in some cases, allows one to go to
possible deviations from a given model. In this paper welower temperature. It has been applied in baed two®
propose a simple method to compute the heat capacity frordimensions.
a high-temperaturéHT) expansion. Numerous techniques Finite-size calculationThe previous approaches are exact
have been developed to study thermodynamical singularitieat high temperature but do not satisfy the sum rule that the
from power series expansiohddowever, in this work, the total entropy is In(3+1). An alternative is to compute the
point of view is slightly different. We mainly focus on the heat capacity of a finite system from the exact spectrum of a
computation of the heat capacity for systewithout a phase small cluster of spins, and then compute the partition func-
transitionat T>0 (here in one and two dimensignand try  tion by summing over all eigenstate@xample: spin-1
to evaluate the specific heaf(T) accurately in the largest chairf®. A direct finite-temperature lancgaalgorithm can
possible temperature range. We devised a two-poinf Padalso be performed,as well as transfer matrix techniques.
like interpolation of a particular function, namely the entropy These techniques automatically give the correct entropy, but
as a function of energy, which satisfies the energy and erthey are limited to small systemdN&36) and finite-size
tropy sum rules obeyed hy,(T). These two constraints are errors may be difficult to control, especially in two dimen-
nonlocal in temperature and improve significantly the con-sions.
vergence of standard Padpproximations. Quantitative extrapolations td=< of finite-sizec, \(T)
Before describing the method itself, let us briefly review data have been done in spin chains but are not really efficient
some commonly used methods to investigate the thermodyat low temperatures. It has been applied to spin cAafhs?
namic properties of spin systems. and the triangular antiferromagriétPower-law behaviors at
High-temperature series expansianthe usual approach low temperature cannot be observed due to the important
to evaluate the strength of microscopic interactions from exdiscretization of the low-energy spectrum in a small system.
periments. Thermodynamic quantities such as magnetic sus- Quantum Monte-Carlosimulations can reach a rather
ceptibility xy or specific heat, are expanded in powers of large number of spins for not frustrated systefas the
B=1/T. Presently computers do not allow to compute moresquare latticK). These calculations reproduce the correct HT
than about 20 terms for quantum systém&hen analyzed behavior(up to small statistical erroysut cannot reach the
through(differentia) Padeapproximants, HT series give re- very low-temperature regime. This technique is one of the
liable results forT greater than the typical magnetic ex- most efficient in studying thermodynamics properties but it
change energy of the model. When the low-temperature formequires important numerical effort and is limited to small
of a given quantity is known, Padapproximants can be systems when the model contains frustration.
improved to reproduce the correct asymptotic behavior. Sum rulesWe propose aimplemethod to compute the
However, with this approach it is difficult to investigate tem- heat capacity which involves a different kind of HT series
peratures much below. In some cases, a detailed under-analysis. In contrast to previous methods, we provide a pro-
standing of the low-energy regime allows one to constructedure forc,(T) which satisfies a first sum rule:
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=Cy(T)
dT=In(2S+1). (1)
o T
Moreover, we incorporate the knowledge of the ground-state
energyey and the energg,, at infinite temperature. These
energies are either known exactly or can be computed nu-
merically. We use this information in a second sum rule:

—» C

e om 0

f C,(T)dT=e(T=x)—e(T=0). (2
0 FIG. 1. Typical shape of the entromyas a function of energg

ind
Finally, the low-temperature leading contribution@{T) is for a spiny system.

taken into account.

We claim that the implementation of these integral con-
straints increases in a significant way the range of validity o A
the HT seried® We will show that this method is indeed
successful even at low or zero temperature for the models
have investigated. By “successful,” we mean that the spe-
cific heat is obtainedlown to zero temperatureith a rela- ..
tive accuracy typically between 1 and 0.1% with only ten H=2J> S-S, (8)
terms in the high-temperature series. This accuracy should be Y
considered as surprisingly high for low-temperature quantiwhere the sum runs over the first nearest neighlsfes. is
ties obtained with a high-temperature series expansion.  defined inside an interval going from the ground-state energy

€y up to the high-temperature energy;. e, is the free-spin
II. INTERPOLATION PROCEDURE average of the energy, which is obtained straightforwardly

since, at infinite temperature one hé§-S;)=0. For the
. _ Hamiltonian(8), one simply get®,,=0. If the ground state
In the canqnlcal ensemblg, the energy per sitnd the |0) is ferromagneti¢ J<0 in Eq. (8)], one has(0|§i-§j|0>
entropy per site @re increasing functions of temperature =1 ande,=Jz/4 for a Bravais lattice of coordination num-
=1/p. Sincee is a monotonic function of, we can express er z However, for antiferromagnetic modelg, is not
s as a function ok rather than of temperature. The Specific ,no\yn exactly but Monte-Carlo simulations, exact diagonal-
heat_as a functlc_m of temperature is easily expressed W'tﬁations, or analytical calculatiorspin-wave, mean-field
s(e) in the following way. The entropg(T) obeys: Schwinger bosons, ejccan be used. In summary the func-
ds tion s(e), defined in the intervaley,0] (e,<0), is an in-
== 3) creasing function o, starting at 0 iney with an infinite
daT T slope, and finishing at In(2) ir=0 (see Fig. 1
To find an approximation af(e), we combine three types
of exact informations os(e):
, ds c,dT , (8)The entropy per spin is In(2) at infinite temperature
S(O= 4" T de’ @ s(e,=0)=In(2) 9)
where the prime denotes differentiation with respecteto and vanishes at zero temperattfte:
SincedT/de=1/c,, we have(the Boltzmann constarks is
set to unity in the whole paper S(€p)=0 (10

Equationg5) and(7) are the basic relations that we shall use
ere. These relations can also be obtained by considering the
ensity of states of a large but finite syst&hiror simplicity,

we discuss the case of a quantum spimodel on a latticé’

he simplest cases are the Heisenberg models:

A. Elementary thermodynamics: From c,(T) to s(e)

wherec, is the specific heat per site. It follows that :

1 (b) The behavior oft,(T— =) is known from HT series.
s'(e)= ?=,8. (5 From the expansion af,(T) in powers of 1T up to order
1/T", we get the expansion of(e) in the vicinity of e
We use this relation to eliminate the variable temperature in—€x=0 in powers ofe to ordere":

C,: n

41\t s(e)e_,ozln(2)+22aiei. (12)
ol e *

-1

Cv_d_T_

dT
de

s’ This expansion can be computed by solving E§sand(7)
order by order fors(e) (details in Appendix A

(c) When the low-energy physics of the model is under-
/2 stood, the low-temperature limit of the specific heat can of-
C=—_ (7)  ten be predicted. In the case where the system exhibits some

s’ ferro- or antiferromagnetic long-range order at zero tempera-

We eventually find
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ture, the low-lying excitations are spin waves. These gapless

modes give a low-temperature heat capacity which is a 03 - exact 6//; 7
power law. When the space dimensionOs a ferromagnet C 74 ]
hasc,(T)~TP’? and an antiferromagnet has(T)~TP. In —~ o2L ' ]
both a cases, we can write: b} C ]
Q - N
Co(Thr_o=TP1, (12 otF _:
wherep and q are integers. This low-temperature behavior o o
translates into a behavior sfe) about the ground-state en- £ os5F =
ergy per siteg,. g e 3
S -05F =
~ _ p/(p+q) - Ev o ol Ll R
S(e)e—>eo (e eo) . (13) 0.1 1
On the other hand, if elementary excitations are gapped the T
system has a thermally activated specific heat FIG. 2. One-dimensionab=3 XY model. Top Exact specific
heat(full line), approximations at ordemrs=2 andn=4 (dash-dot
¢, (T)r_o~exp(—A/T) (14) lines), n=6 (dotted ling. Bottom Differences with the exact result

(notice the magnified scalen=6 (Dotted line, n=8 (dash ling,
n=10 (long dash, n=22 (dash-dox, andn= 30 (full line). Shown

and Eq.(13) is replaced by a logarithmic behavior about the o diagonal Padapproximants[ n/2,n/2].

ground-state energisee Appendix €

A. One-dimensionalS=3 XY model

B. Interpolation by Pade approximants As a first application, we consider the sginXY chain:

We now define the interpolation procedure between low
and high energy fos(e). We look for an approximation of

s(e) which satisfies Eqs(9), (10), (11), and (13). A two- H=22 (S-S ,+9-9. ). (16)
point Padenterpolation is not directly possible sine¢e) is . . :
singular ine=e,. We have to transforns to obtain regular This spin problem can be solved exacthe Jordan-

behavior in thevholeinterval[ e,,0]. This is possible whep ~ Wigner transformation maps theY model to free spinless
andq are two integergbut other low-temperature form will fermions and provides a check for a gapless spectrum. The
be used for thermally activated, in gapped systems, see energy per site aff=0 (respectively, atT—x) is e,

Sec. I\). We define a functioi(e) as =—192/7r (respectively,e,=0). The heat capacity is given
by:

G(e)=s(e)P*d. (15
2p2% (=2 cog(k)
This function now behaves ag{ e;)? whene—e, and as Co(B)= Tfo cosH[ B cogk)] dk a9
In(2)P*94+ O(e?) whene—0. It is now possible to look for
approximationsz2°P of G which are of Padéorm (details in
Appendix B). This interpolation scheme fails if any of the
functionsG(e), s(e), s'(e), or —s"(e) becomes negative in
the interval[ ey,0]. This provides a natural criterion to select
the degree$u,d] for which Padeapproximants give physi-

cal solutions. Th_e curve for thE.l specific heg(T) is even- tained from the Padapproximants. At each order, a few
tually obtained in a parametric forfiT(€),c,(€)}ece,o1 approximant$u,n—u] lead to the same variations. In Fig. 2,
thanks to Egs(5), (7), and(15). only diagonal Padepproximants n/2,n/2] are shown. A
convergence of the specific heat is obtained with a relative
accuracy of the order of one percatdwn to zero tempera-
ture with only six terms in the HT expansion. We want to
emphasize that the slopd¢,/dT)(T=0) is not imposed in

We start by illustrating the method for systems where theour procedure. Therefore, the method provides quantitative
specific heat is proportional f6* at low temperature. Some information on this low-energy parameter which character-
cases where the specific heat is thermally activated will bézes the low-energy excitations. The value of the prefactor is
described in the next section. Data files with the numericakéxactly known for thisXY model and we find that it oscil-
results presented her@s well as colored versions of the lates around the exact val(ee., 7/6). It is a few percent
figureg are available upon request. below the exact value at the order6.

From this formula, the high- and low-temperature expan-
sions can be computed. We find,(8—0)=3p%—3p*

- andc,(T—0)= (w/6) T+ O(T®). The linear law at
low temperature givep=qg=1 in Eq. (15). Figure 2 shows
the comparison between the exag(T) and the ones ob-

lll. LOW-TEMPERATURE POWER-LAW BEHAVIOR
OF C,(T—0)
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0.1 = -
0k s
£ os5F = T
4 OF 3
8 -05 z— 9 —z FIG. 4. Ferromagnetic spin-1/2 Heisenberg model on the trian-
- cvvvenl vl el gular lattice. Comparison of the specific heats obtained from differ-
0.01 0.1 1 10 ent Padeapproximants at orden=13. The Padepproximant of
T reference has degregs,6]. Approximantg 6,7], [8,5], [12,1], and

[3,10] differ from the reference by less than 10
FIG. 3. Specific heat of the antiferromagnetic séih\leisenberg

chain. Top Result from Klumper et al. (Ref. 28 (full line), ap- C. Triangular lattice Heisenberg models

proximations at orders=3 andn=5 (dash-dotted lings andn . .
=7 (dots. Bottom Difference between Ref. 26 and present ap- I irst; we look at the convergence of this method on the

proach.n=7 (dot line), n=9 (dash ling, n=11 (long dash, oddn  f€rromagnetic case where the ground-state energy is known

from n=13 ton=23, andn=24 (full lines). exactly. Figure 4 shows the comparison of the various Pade
interpolants[u,d], with n=u+d=13 (highest available
B. One-dimensional antiferromagnetic Heisenberg order’). Two of them have a singularity {0,3] and[4,9]).
spin-3 model If we exclude the polynomial formd=0) and the cased

>10, all interpolations lead to the same variationgfT)
H=22 33 (19) in the whole range of temperature. Figure 4 also.illustrates
i 1 the very small dispersion of the different Paajgproximants
obtained with this method. It is also remarkable that the co-
This model is solvable with the Bethe ans#zThe efficient of the dominant term at low temperature depends
ground-state energy is exactly knoftro be e;=—2 In(2) weakly on the interpolation function used. As before, only
+1. The low-temperature limit of the heat-capacity’is the power ofT is imposed, but the prefactor is not. We get
¢, (T)=T/3+O(T?). The HT expansion computed by Baker c,(T)~0.142(2)T at low temperature. Notice that this quan-
et al?® was recently extended to ordgf* by Bihleret al>* ity is not given correctly by a linear spin-wave approxima-
The heat capacity curve has been computed for anisotroption (noninteracting magnomnsWe are not aware of any pre-
versions of the spir- chain?® but we are not aware of any vious result for this quantity. A high-density monolayer of
exact computation of, for the isotropic Heisenberg model solid 3He solid is, to our knowledge, the only experimental
based on thexactBethe ansatz equatioridue to the exis- realization of a triangular-lattice spih-ferromagnet. The
tence of an infinite number of coupled equations at the isoheat capacity has been measured by Iskidal ® and their
tropic poin). However, an approximate solution was pro- results are in very good agreement with our calculations.
posed recently by Kimper?® The accuracy of specific heat In Figs. 5a) and 3b), we see now how the result con-
obtained by his method is claimed to be extremely high verges when more terms are added in the HT expansion. For
(~1077). each HT expansion order (as indicated in the figujeall
Our results for this model are displayed Fig. 3. A goodpossible fractiongu,d] (u+d=n) are tried. Except for the
convergence is obtained down to zero temperature. If wéowest order, at each order several approximants fall on the
truncate the HT expansion at order seven, an absolute precisame” curve. A reasonable convergence is obtained even
sion of one percent can already be obtained. At the highesbr n=5.
order, the specific heat is in excellent agreement with the Figure §b) shows the approximatec),(T) with increas-
result of Ref. 26. The height of the peak, for instance, agreefg HT ordern for the antiferromagnet Hamiltonian. This
with an accuracy of 10%. The low temperature limit is also model is frustrated, but it is now well establisk&é’that the
in good agreement with the exact result: we fiodT) ground-state is a three-sublattice” éllestate. The low-
=0.329T at order 24[instead ofc,(T)=3T]. The differ- temperature specific heat is thus proportionalTto The
ence with result of Ref. 26 at intermediate temperat@ses  ground-state energy was estimated from exact diagonaliza-
bottom of Fig. 3 is due to the fact the low-temperature co- tion data?® Again here, we see a convergencerior5. This
efficient is off by 1% from the exact valuk. This resultis  should be compared with direct Padpproximants to the
obtained without any extrapolation wher-~. Taking into  specific heat, which was done in Ref. @ibtted curve in Fig.
account finite-order corrections could improve further the acb(b)]. The comparison with our results shows indeed that the
curacy. The position of the peak as well as the low temperadirect approach does not even allow to get correctly the
ture limit are summarized in Table I. maximum ofc,(T). Our method converges with a relative
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FIG. 5. Spin-1/2 Heisenberg model on the triangular lattige- Top Variations ofc,(T) with respect to the number of terms in the HT
expansion in the ferromagnetic case. The avéilom 2 to 8 andh= 13 are shown. Inset: data for=13 in a log-log plotBottom Difference
with the highest orderr(=13). Evenn from 6 to 12 are shown. Order 12 and 13 differ by less than #1(b): Same aga) for the
antiferromagnetic case. Order 12 and 13 differ by less than 2.Ithe dotted lingwith the spiké is from Elstnerel al.?’

accuracy of about 1% down to zero temperature and we get This model is the simplest one with a gapped spectrum. It
c,(T)~5.3(2)T2. It would be interesting to compare this allows to check the convergence of our method to the exact
result with spin-wave calculations taking magnon-magon intesult in the case of a low-temperature activated heat capac-

teractions into account. ity. The energy per site a&i=0 ise;=—1 ande,,=0 atT
_ _ =o. The specific heat per spin is given loy(8=1/T)

D. Square lattice Helsenberg model :[ﬁ/cosh@)]z_ The HT expansion starts aSJ(IB: 1/T)

We evaluated the specific heat for tBe=% Heisenberg ~B8°—B*+ ..., while the spectrum has a gap=2. The

model on the square lattice. Figure 6 shows the convergendteat capacity is thermally activated at low temperature:
of the specific heat with respect to the number of terms in the 5

HT expansion. The convergence with the HT expansion or- C,(B—)~pexd—AB). (20
der is faster in the antiferromagnetic case than in the ferroror such behavior, the entropy behaves as

magnetic one. At low temperature we obtairy,(T)

=0.25(0.01) [respectively,c,(T)=0.25(0.01)?] for the s(e)~—(e—egp)log(e—ey)/A, (21
ferromagnetiqrespectively antiferromagnejicase. The re-
sult in the antiferromagnetic case can be compared with th
modified spin-wave theory of Takaha$hivhich is c,(T)
=0.21472 in our units.

hene—ey. We need a transformation which converts this
ogarithmic singularity into a regular behavior. We choose
the transformation

IV. SYSTEMS WITH THERMALLY ACTIVATED G(e)=(e— d|se (22)
(e)=(e—eo)gg| oo
HEAT CAPACITY € e—€
A. One-dimensional Ising model and we approximat& by a Padeapproximanisee appendix
C for detailg. The convergence is shown in Fig. 7. The gap
H=2 z oz 19 also converges rapidly to the exact vaIu_e 2. The best Pade
Ei S-S (9 approximants are those of the fofrd,d] with d~ n/2.
0.4_|||||| T T IIII!-I\l T LI E|l|'||| T T IIIIII| 6' T ||;
0.3 :_10-1 _: 0.4 ;_10-' r _;
. 1 0.3 Fros L 3 FIG. 6. sping Heisenberg
— [ 102 1 = B 3] ;
E o2L 1 & c . model on the square lattice. Same
o " ] o 02 o = as Fig. 5 for the(a) square lattice
01 I o1 E E ferromagnet andb) square lattice
- A ] T F J antiferromagnet. Even from 2 to
0—...i.| g A 1 — Ll - 14 andn=13 are shown. Orders
. A SRR " | n=13 and 14 differ by less than
€ 1E A 3 B os5EF \ 3 3 :
e S . na, 17 TE 3 4.10° in the ferromagnetic case
2 OF SN = 1 8 9F 7 E and by less than IG in the anti-
S -1F ‘ 4 S-05F oo dgrETIi 3 ferromagnetic case.
- :Illllll 1 ' |; _IIIIIII 1 1 IlIIIII 1 1 1 11
0.1 0.1 1
T T
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TABLE |. Parameters of the different models. Column two indicates whether the couplings are ferromag-
netic (F) or antiferromagneti¢AF). e, is the ground-state energy per spép, is the mean energy at infinite
temperaturéheree,,=0). n is the highest known order of the HT expansion of the specific heat. The three
last columns are parameters extracted from our analysis: low-temperature limit and position of the peak.
These result are obtained from the highest order available. The error bars reflects the dispersion of the
different Padeapproximants at the highest order. Figures with a styrafe those for which the exact value

is known (see text

Heisenberg model €~ €m n c,(T—0) Tmax cy
S= % chain AF —2In2+1/2 240 0.329°T 0.96182) 0.3497
S=1 chain AF —1.40fF 20° exp(—0.40°/T) 0.8611) 0.5431)
Triangular lat. F —3/2 13 0.142(2)r 1.37585) 0.4033)
Triangular lat. AF —1.11 13 5.3(2)T? 0.841) 0.22315)
Square lat. F -1 14 0.25(0.01y 0.7854) 0.3833)
Square lat.  AF  —1.34" 149 0.25(0.01)? 1.1632) 0.4672)
%Reference 21. Reference 29.
PReference 24. 9Reference 37.
‘Reference 33. "Reference 38.
YReference 34. 'Reference 39.
°Reference 27.
B. One-dimensionalS=1 Heisenberg model The value of the ground-state energy and spin gap is
known very accurately (from the density-matrix
- renormalization-group calculations done by White and
H=§i: S Sii1 (23 Husé® to be e,=—1.401484038971(4) and A

=0.4105@2). We use the HTseries data obtained up to

It is known that this system exhibits a spin gégaldane  order 20 by Elstner, Jolicceur, and Golinéfiwe apply the

phas¢ and the heat capacity is thermally activated. MoreS@me transformation as with the one-dimensional lsing

precisely, a nonlinear sigma model approidives: model. The result is shown in Fig. 8. Notice that Eg1)
implies c,(T)~exp(—A/T)/T? instead of ~exp(—A/T)/T>?

A 3/2 as it should be from Eg24). The consequence of this little

CU(T):—(— exp(—A/T). (24)  inconsistency is that, at fixed order in the HT series, we

27\ T overestimate the value of the gan Note that the correct

low-T behavior would only give a logarithmic correction to

More generally, if elementary excitations are weaklys(e) [Eq.(21)]. This can be rectified, in principle, by a more

interacting massive  bosons, one  expects,(T)  sophisticated transformation sfe). Nevertheless, we obtain
~exp(—A/TT?72 in space dimensioD.
_l T TT |||| T T T | Ll_lll‘.’._. T T T 1T ||_
04 | ]
0.3 [ = ]
£ __f g ]
e 0.2 :— o __
0.1F ]
0 __I 1 1111 || 1 | T_
— E ~ i 1 — =
E 1 E N 12 = 3
y E // \\'l .4 .L—‘ \/> E
g 0 ;_ ’\T\ 5 "I K ‘\ == T 2 7 ;
% -1 E— \.\ !\ /, \.\-“/,f o /) _f
- Ll & II:I\VI:q L el S EL ||||n|/i| L L 1A
0.1 1 10 0.1 1
T T

FIG. 7. One-dimensional Ising mod&lop comparison between FIG. 8. Specific heat of the antiferromagnetic Heisenberg spin-1
the exact specific hedfull line) and those obtained from second chain. Top HT orders aren=2, 4, 6, 8, and 2Gfull line). Inset
(dot-dashed lineand third(dashed lingorders.Bottom difference  Log-log plot of n=20 and theoretical prediction of Eq24)
between exact result and the approximations at orderg, 3, 4, (dashedl Bottom Difference betweem=20 and evem from 8 to
and 5. 18.n=16,18 differ fromn=20 by less than 210 3.
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APPENDIX A: SERIES FOR s(e—0)
10-8
e sl oL We describe how the series fsfe—0) is obtained from
/ fo /o | °'°°51/‘f,'3|1 oots the series forc,(T— ). Assume the expansion of the spe-
0.05 o1 cific heat is known up to order:
T n
q;
FIG. 9. Convergence df,(T) at low temperature for the anti- CU(T)TMF% 7 +O( T”*l) : (A1)
=

ferromagnetic Heisenberg spin-1 chain. Even orders from 8 to 20
are shown. Full bold line is= 20, the dashed bold line is from Ref. : :

’ Equations(5) and(7) impl
32 (Eq. 24. Notice thatn=16 and 18 are almost identical at the q s (7) imply
scale of the figure. Inset Spin gap for orders n " a4t _ ' 2

s"(e)c,[T=1/s'(e)]=—[s'(e

=8,10,12,14,16,18,20. The horizontal dashed line is the exact value (€)c,[ (€] [s'(e)]
(0.41) and the full line is a least-square fit to the data. It extrapolates
to A=.40. Upward triangles are for approximants with degrees
[n/2+1,n/2—1], square fon/2,n/2] and downward triangles for
degreegn/2—1,n/2+1].

s"(e) =-[s'(e)]% (A2)

22 as'(e)'

) _ _ Expanding Eq(A2) in powers ofe gives the series fos(e
a gap which varies roughly asrf/(n is the order of the HT —0). For instance, if we have

expansion and the extrapolation shown Fig. 9 gives 0.40.

So, very surprisingly, this HT approach is able to provide a, a; ay 1
some quantitative and nontrivial information about the low- CU(T)THOO=—2+ =t —4+O(—5) (A3)
energy physics. ™ T
V. CONCLUSIONS we obtain

We have presented a new and simple method to analyze 1, a3 4

HT series expansion for the specific heat of spin systems. It S(€)e-o=IN(2)~ 5 €~ —e
. o 2 6a

requires only : the ground-state energy and the qualitative 2
behavior ofc,(T) at low temperature. These two pieces of 2a,a,— 3a>
information allow us to constrain the specific heat with two T TSt 0(e). (A4)

sum rules which improve drastically the convergence of the 432

HT expansion. This technique is particularly appropriate to . . .
analyze specific heat measurements in a large temperatuln% fact, sqlvmg Eq:(A2) can be done very simply with a
range. Since in many cases it is able to predict the positioﬁom\’are likemAPLE:

and the height of the maximum @f (T), this method can
simplify and improve the determination of exchange param-
etes) and of the number of spins in the sample. Remark-
ably, the method converges down to zero temperature with
only ten terms of the HT series in most of the cases we have
investigated. This method can even provide some quantita%=—D(8)(&)**2/D(D(s))(€) =subsT=1/D(s)(e),cv);
tive information on the low-energy physi¢see, e.g., the

n:=4; Order=n+1:

cvi=add(a[i]/T**i, i=2.n);

value of the spin gap of the Haldane chain, or the zero- dsolve({eqs(0)=1In(2), D(s)(0)=0},
temperature entropy of the Kagome antiferromagfif.
35)]. s(e),’type=series);
It would be interesting to apply this technique to more
sophisticated models such as theJ or Hubbard models. It APPENDIX B: PADE APPROXIMANT FOR G(e)

also seems worthwhile to investigate other interpolation

methods than the simple Padpproximants presented here. ~ When the system has a specific heat with a power law
The application of this HT analysis to systems with finite- T at low temperature the functicB(e) =s(e)P*9 is regu-
temperature phase transitions is another promising directiolar at the ground-state energy-e, as well as at high tem-
we are currently investigating. peraturee=0. We can therefore approximat by
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e\P where
Gapp(e)=ln(2)p+q(1—— Padeg, 4 (e), (B1) 5
€o € p+q
where Padg q;(e)=N(e)/D(e), N (respectively,D) is a x= a, In(2)° (B5)
polynomial of degreeu (respectively,d) and N(0)=D(0)
=1. By construction, Eq(B1) guarantees that®"" has the APPENDIX C: G(e) FOR GAPPED SYSTEMS

correct behavior at low temperatu@®’~(e—ey)P. One
has to evaluate the Pad@proximant so that the HT expan-
sion of G(e) [and thus ofs(e) andc,(T)] is exact up to
ordern=u+d. As usual, this is done by expanding both e—
sides of Eq(B1) in powers ofe and solving a linear system s(e)=— A
to determine the unknown coefficients of the two polynomi- (C)
alsN andD. As an example, we give here the general ex-

pression for the three possible approximants at ondep:  Fora=0, we recover Eq(21) and the transformation of Eq.
(22) holds. Whena#0, in order to remove the logarithmic

e 1 e)\? singularities, one has to differentiate several times. But such
Pad@z,O](e)=1+pe—o+ >P(p+1)=x] e (B2)  transformations provide singular behavior f(e), mainly
because of the change of sign in the arguments of the log

With gapped systems, the specific heat has the form:
c,(T)=exp(A/T)T* 2. We obtain the low-energy limit:

—In(e—ey) ]

€o

Inf[(e—eg)Al+aln A

1 X betweene=¢, ande=¢,=0. More work has to be done in
1+3/p—1+ 0|2 these cases.
Pade, 1j(e)= 0 (B3) Unlike the case of a power-low behavior at low tempera-
1+=|—p—1+ X1€ ture, cases with a gap require an integration in order to go
2 P] € back from G(e) defined Eq.(22) to the entropy and the

specific heat. Since we look for approximationsGife) in a

Padeform, this integration can be performed analytically.

The value of the gap\ can be obtained directly frors,
(B4)  without integration, sinc&(e=gey)=1/A.

. e 1 e\?
Padgz(e) “=1-p-+5lp(P=D+x]{ |
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